
1

3D Modeling of JQH Arena using OpenGL

Vanna Bushong
Missouri State University

December 9, 2010

CSC 625 (Folder: Bushong10)

Abstract

3D modeling of structures has become a common technique for visualizing a location without physically
being there. One of the interesting applications of this technology is the modeling of sports arenas and
stadiums, resulting in a virtual environment fans may view before purchasing tickets. The following
report describes the development of an application for generating and viewing a 3D model of JQH Arena
at Missouri State University. A laser scanner was used to collect data points for the model, which were
stored in text files and displayed as coordinates in a 3D world using OpenGL and the GLUT (OpenGL
Utility Toolkit) library. Various techniques were implemented for enhancing the look of the virtual arena,
including OpenGL primitive drawing and texture mapping. The resulting application - the JQH Arena
Viewer - allows users to select a section of the arena on the lower level and view the model from that
section, as if they were virtually seated there.

 Keywords: 3D modeling, laser scanners, sports arenas, OpenGL, Missouri State University

INTRODUCTION

 Project Background: In recent years, the technology available for scanning the dimensions of
buildings and other structures has been put to use in a growing number of forms. Bui et al. [3] have
done research on laser scanning applications for construction and maintenance, and Unver et. al. [7]
demonstrated scanning of automotive designs. Laser scanners are used to collect data on buildings,
machinery, areas of land, or other environments by shooting a laser and calculating the distance
between the scanner and the laser dot on the subject. The data points are used to build a model of the
subject in three dimensions.

3D modeling of sports arenas has become a popular trend, as consumers want to see the view from
their seats before spending money on tickets. Many professional sports venues already have models,
such as Yankee Stadium, Daytona International Speedway, and Cowboys Stadium, to name a few.
Ballena Technologies Inc. in Alameda, California, offers a market-leading product for sports venue
visualization called Seats3D [2]. The product is used by a growing number of clients, including teams in
the National Basketball Association, Major League Baseball, National Hockey League, National Football
League, Major League Soccer, and more. IOMEDIA in New York, New York, has developed a "Virtual
Venue" for the New York Yankees which offers additional options for viewing the entire stadium from
different angles and at different times of day for an idea of where sunlight will hit the seats [6, 4]. These
seat viewing applications are powerful marketing tools that give fans a realistic look at where their seats
may be.

2

JQH Arena in Springfield, Missouri, is home of the Missouri State Bears and Lady Bears basketball teams.
The 11,000 seat arena was completed in 2008 and also hosts concerts, Professional Bull Riders (PBR),
and other special events. The arena currently does not have a 3D seat viewing application, so it was an
ideal location for conducting this research project. The initial goals for December 2010 were:

 Collect 3D coordinates of JQH Arena using a laser scanner.

 Create a 3D model of the arena by building a mesh from the data points.

 Develop a user interface that allows users to view the model from each seating section on the
lower level.

 Allow for panning of the camera while viewing a section by clicking and dragging the mouse over
the model.

 Program Design: Before developing the program, the first step of the project was to collect data
from the arena using a laser scanner. The data points were separated and sorted based on the
horizontal angle of the scanner at the position of each point. This process is described in greater detail in
the "Data Collection" section.

Once the text files were prepared, the next step was designing the program to display the data. The
following outlines the logical flow of the program, with each step and the algorithms involved being
described in subsequent sections of this report:

 Run initialization and startup functions

 Load pixel maps

 Load data points for the model

 Draw 2D seat map

 Check for mouse input
o On click, determine which section was clicked
o Position camera appropriately
o Draw model
o Draw HUD
o Check for mouse input on the model

 On click and drag, pan camera
 If back button clicked, draw 2D seat map

3

 Results: The resulting program - named the "JQH Arena Viewer" - nearly meets all of the goals
established for December, with a few modifications. Upon startup, the program displays a user interface
that allows for selection of a seating area on the lower level of the arena, as shown in Figure 1.

When the user clicks a section, the camera is positioned appropriately, and the model and HUD are
drawn, as shown in Figure 2. The user can click and drag the mouse over the model to pan the camera,
or click the "Back to Seat Map" button to return to the main screen.

Figure 1. JQH Arena Viewer user interface.

Figure 2. A view from Section L.

4

The main difference between the results and the original goals is that currently there is no mesh
structure built from the data points. Instead, the floor and court have been drawn using polygons and
texture mapping. The rest of the arena (seats, ceiling, etc.) is simply composed of a bunch of dots.
Although it was not the original intent, this solution is a suitable workaround until further research can
be completed.

DATA COLLECTION AND ANALYSIS

 The Scanning Process: Laser scanning of JQH Arena was performed on September 30, 2010, with the
assistance of Dr. Kerry Slattery, Assistant Professor of Technology and Construction Management, of
Missouri State University. Dr. Slattery's scanner - a Leica ScanStation2 - was initially placed in the center
of the basketball court and connected to his computer. The computer runs Leica Cyclone, a software
program to control the scanner, and Leica Cloudworx to analyze the data collected.

Two reflective targets were placed on tripods on opposite sides of the court. The scanner emitted a laser
beam to detect both targets and establish them as fixed points among the x, y, and z coordinates with
the scanner itself being the origin. The targets were not moved throughout the process so that each
scan could align with the others at those coordinates. Figure 3 shows the setup of the scanner and
targets.

The scanner first took photographs of the lower half of the stadium, then the upper half and ceiling on
the second rotation. Then a scan was completed with a resolution of 1/4 degree vertical and horizontal,
which resulted in 540 vertical and 1440 horizontal points. A second scan was performed at a higher
resolution of 3/16 degree, which resulted in 720x1920 points.

The photographing and scanning process was repeated for three more sections of the arena. For these
scans, an interval of 1/8 degree was used and the scanner was set to rotate 184 degrees facing the court
to ensure accurate data for a full 180 degree view from that position. The resulting data was 1080x1440

Figure 3. Setup of scanning equipment. The yellow tripods hold the scanner at
center court and the targets on each side.

5

points. For these scans, the scanner was first set on the south side of the arena at the top of the lower
section, facing the half court line. Then it was moved to the east side at the center of the upper level.
The final scan was taken from the north side, at the center of the upper level.

The resulting data from the scans was stored in five separate text files. The number on the first line of
each file gives the number of points. Each line that follows contains the x, y, and z coordinates, intensity,
and r, g, b, values for every data point. Figure 4 shows a partial view of one of the files.

 The Sorting Process: One of the initial challenges of this project was preparing the data for use in the
program. The data files created by the scanner were not in any sorted order, making it difficult to
understand where the points were located and impossible to build a mesh. To break up the data into
manageable pieces and sort it for better usability, it is helpful to understand the orientation of the world
in which the scanner collects data.

As shown in Figure 5, at the origin of the scanner, the x and y axes run parallel to the surface of the
court, while the z axis serves as the height. As the scanner rotates, its horizontal angle is constantly
changing. At each interval, every 1/4 degree for example, the laser moves up at an increasing vertical
angle, collecting data points. By calculating the horizontal angle of every point, it was possible to

690136d
87.487203 -53.348134 -1.208786 -562 78 69 86
-103.886965 -65.682997 -5.188378 -607 46 40 44
-103.475860 -66.057858 -5.187277 -803 48 43 43
-95.561230 -57.541088 -5.201594 -876 67 66 64
-124.384064 -80.162798 -0.387476 -886 78 68 69
-126.216917 -79.793645 -4.338934 -1088 34 28 34

Figure 4. Sample lines from a data file produced by a scan.

Figure 5. Orientation of the scanner.

6

separate the data from each scan into four different files, based on which quadrant it lies in. See Figure
6 for an illustration.

Horizontal angles were calculated by importing the data to Microsoft Excel and applying the arctangent
function, then converting from radians to degrees. The data was then filtered and separated according
to quadrant. At this point, the column of intensity values was removed, as this data is not currently
needed for the program, leaving a file with only x, y, z, and r, g, b values. The data files in this state are
the ones currently being used in the program.

INITIALIZATION AND STARTUP FUNCTIONS

The JQH Arena Viewer was written in C++ using OpenGL, which is a powerful, industry standard 2D and
3D graphics application programming interface (API) [5]. Also, the OpenGL Utility Toolkit (GLUT) library
provided many of the necessary drawing functions. GLUT is a set of support libraries that provide basic
functions for input, windows, and menus, which OpenGL does not support on its own [1].

Figure 6. The four quadrants of the court; not to scale. The green
line represents the laser at a horizontal angle of 45 degrees, and
the red dots represent points along this line. By calculating the
horizontal angle of every point, it was possible to split the data
into four files, one for each quadrant.

7

 void main(): The program begins in the main function, which creates a window and sets its size and
position on the screen. The function calls myInit() for initialization, startProgram() to begin drawing, and
glutMainLoop(), which sends the programs into an infinite loop for continuous drawing to the screen.

 void myInit(): The initialization function calls all of the routines for loading images and the 3D
coordinate data. One of the challenges of this program was that the view must be able to switch back
and forth from 2D to 3D. Since the 2D seat map is the first thing to be drawn, projection mode and
gluOrtho2D are initially used to set up the screen.

 void startProgram(): This short routine registers a callback for displaying the 2D seat map and checks
for a mouse click on a seating section using glutMouseFunc.

8

LOADING DATA

 Pixel Maps: A pixel map is an array of unsigned bytes containing the rgb values of each pixel in an
image. For this project, six different images were saved as text files with their color data stored as
integers using the GNU Image Manipulation Program (GIMP). The following example, loadArenaLogo(),
opens the arenaLogo.txt file and reads the integers into an array (logoNum[i]). These values are assigned
to an array of unsigned bytes (logoValues[i]), the necessary data type for a pixel map. The final for loop
stores every three values (r,g,b) into a row, column position of the logoColorBlock array. The number of
rows and columns of the pixel map corresponds to the height and width of the image, in this case
47x200.

Once the pixel maps are stored, they may be drawn directly to the screen in a 2D view or bound as
textures in a 3D rendering, as explained in following sections.

9

 3D Coordinates: Since the coordinates of the arena are stored in several different text files, it was
inefficient to write separate routines for loading each of them. To solve this problem, a structure called
"dataFile" was declared so each data file could be treated as an object with its own members. The
member array of floats called "data" is set to a size of 550,503 rows, since this is the largest number of
points in a single file. The array has 6 columns for the x, y, z, and r, g, b values.

Objects of type dataFile were declared for each of the files used in the program. For example,
centerQuad1 contains data from the scan taken at center court that lies in quadrant 1.

The loadModel() function sets the path for each dataFile object and makes a call to the loadData
function, passing in the object as a parameter. The following code snippet shows an example of this for
the centerQuad1 object.

The loadData function opens the path of the dataFile object, reads the number of points from the first
line, then stores the x, y, z, and r, g, b values for each point into dataFileObject.data[i][j]. This array will
be used later in the program for drawing the points.

10

DRAWING THE 2D SEAT MAP

After the data has been loaded, the startProgram() function registers a display callback to
drawSeatMap(). This is a fairly straightforward routine, consisting of various subroutines for drawing
each object on the map.

 The court and seating sections are drawn using OpenGL functions for points, lines, and polygons.

 The text "VISITORS" and "BEARS" are displayed using the glutBitmapCharacter function, which
outputs a character string.

 The handicapped icons are bitmaps, drawn using the glBitmap function.

 The bear logo is drawn using glDrawPixels, which reads from the pixel map array created during
initialization.

At this point, everything in the buffer needs to be displayed, so glFlush() is called at the end of the
routine.

MOUSE INPUT ON SEAT MAP

After the seat map has been drawn, the program continuously checks for mouse input with the
glutMouseFunc(mouseOnSeatMap) callback. An initial challenge was figuring out how to know if the
coordinates of the user's mouse click were within the coordinates of a seating section. Since the sections
are not perfect rectangles, it would not work to assign a maximum and minimum value for x and y, and
check to see if the mouse click fell within those coordinates. To solve this problem, the

11

mouseOnSeatMap function switches to the back buffer and calls drawSectionPicker(). This routine draws
all of the polygons forming the seating sections in different colors. When glReadPixels is called, the rgb
values of the pixel that was clicked are stored into an array of unsigned bytes called "pixel."

Each section was assigned a red and green value of 0, but the blue value was incremented by 1 for each
section. So section A's values were (0, 0, 1), sections B's were (0, 0, 2), and so forth. Knowing this, a
switch statement was written to check for the third value in the pixel array, and to handle the events for
the section corresponding to that color value. The following code shows what happens when the blue
value is a 1, meaning section A was clicked. The initial camera position is set, and callbacks are used for
drawing the model and checking for mouse input. These functions will be described in detail in the
remaining sections.

12

POSITIONING THE CAMERA

Each time a section on the 2D seat map is clicked, the camera position must be set accordingly. This
position must also be updated when the user clicks and drags the model to simulate looking around the
arena. The positionCamera() function is called to handle these events.

Whenever positionCamera() is called, the scene needs to be drawn in 3D. Therefore, the function sets
up a viewing volume in projection mode using glFrustum. It was difficult to find the best settings for
viewing this model, but after plenty of experimentation with the numbers, the parameters in the code
below give the best results. The left, right, bottom, and top coordinates of the near plane are defined by
the first four parameters of glFrustum: -8, 8, -8, 8. The last two parameters, 10 and 250, represent the
distances to the near and far planes, respectively.

After switching to modelview mode, the gluLookAt function sets the location of the camera, the
coordinate it is looking at, and the up vector. In the code below, eyex, eyey, and eyez are variables for
the camera's location, while centerx, centery, and centerz represent the coordinate it is pointing
towards. The last three parameters specify which vector is "up" - x, y, or z. Since the z axis represents
the height of the model, z will always be set to 1.

The camera position is not perfect at this point, but it does provide a reasonable viewing area for the
arena. As it is now, the viewer appears to be about halfway up each section of seats, but too high on the
z axis to actually be sitting down. This is a problem that will be addressed in future work on this project.

DRAWING THE MODEL

The drawModel() function is where the coordinate data is actually drawn to the screen. At this point in
the research, there are no successful algorithms for building a perfect mesh, so each coordinate is
simply drawn as a point. To make the scene more realistic, the floor and basketball court have been
drawn using points, polygons, and texture mapping. The drawModel() function initially sets up the scene
for 3D rendering by enabling depth testing and setting the background color to black. After drawing the
data points and additional polygons, drawHud() is called and glFlush() displays the buffer contents on
the screen.

13

 Displaying Coordinate Data: Coordinates of the model are displayed by reading the data from each
dataFile object. In order to display a better picture, it was necessary to have as many dots as possible
without having so many that performance was noticeably hurt. The current solution is to have two scans
for each quadrant. The centerQuad scans - used in each quadrant - were taken from the center of the
court with an interval of 3/16 degree. The southQuad scans are used in quadrants 2, 3, and 4, but did
not return the best quality data in quadrant 1, for reasons not completely known. Data from
centerCoarseQuad1 is used in its place, which is part of a scan taken from center court at an interval of
1/4 degree.

The readData function takes a dataFile object as its parameter, loops through the object's data array,
and sets a vertex for each point by reading the x, y, z, and r, g, b values.

14

 Texture Mapping: To improve the overall look of the model, the floor and basketball court were
drawn using OpenGL functions for points and polygons. Four different textures were applied to display
the images on the surface of the court: the bear logo, JQH Arena logo, Missouri Valley Conference logo,
and the words Missouri State written across the baseline.

To map textures in OpenGL, an array of unsigned integers specifies the number of texture objects, in this
case four. The glGenTextures() function sets up four numbers as unique identifiers for each texture. In
the code below, glBindTexture() indicates that textureObjects[0] will be a 2D texture. The parameters
for this object are subsequently listed, followed by glTexImage2D(), which specifies that this texture
comes from the array of unsigned bytes "largeBearColorBlock." The texture binding process is repeated
for each of the other three textures, but not shown below.

The coordinates of a texture object are then mapped to the coordinates of a polygon using the
glTexCoord2f() function as shown below.

15

DRAWING THE HUD

After the 3D model has been drawn, the drawModel() function calls drawHud() to create a 2D heads-up
display at the bottom of the screen, as shown in Figure 7. At this point, the program must switch back to
drawing in 2D, so the projection and modelview matrices are set to identity, glOrtho is used to set up a
parallel projection, and depth testing is disabled.

The HUD is then drawn using polygons and bitmap characters, and the JQH Arena logo is a pixel map
displayed via glDrawPixels().

One of the future goals for this project is to make the HUD more elaborate with additional features.
There will eventually be a "Go to Section" button, which pulls up a menu allowing users to select
another section to view without having to return to the seat map. The possibility exists that a user might
someday type in his or her section, row, and seat number, and the view will update to that exact
location.

MOUSE INPUT ON MODEL

The mouseOnModel() function converts the screen coordinates of the mouse to world coordinates, then
checks for two different scenarios. In one case, the user clicks the mouse anywhere over the model (not
the HUD), triggering a callback to glutMotionFunc () for panning the camera. In the other situation, the
user clicks the "Back to Seat Map" button on the HUD.

Figure 7. The HUD as displayed at Section C.

16

 Panning the Camera: The ability to pan the camera gives the user a more realistic view of the arena.
The panning event is triggered when the user clicks anywhere within the coordinates of the screen
where the model is drawn, excluding the HUD. The x and y coordinates at the point of the mouse click
are saved as previous_x and previous_y, which are used in the pan() function.

The glutMotionFunc() is a callback that occurs when the user moves the mouse while holding down the
button. Once the pan() function is called, x and y are converted to world coordinates, and the change in
position of x and y from their previous positions is calculated and stored in delta_x and delta_y.

The change in y coordinates of the mouse (up and down on the screen) directly correlates to a change in
z coordinates (height) of the model. Therefore, the z position the camera looks at - stored in the variable
centerz - is incremented by delta_y.

The change in the mouse's x coordinates is not quite as straightforward. For example, if the viewer sits
in section C, he is facing the x axis, with the positive side of the axis to his right. In this case, centerx
could be incremented by delta_x with no problems. However, if the viewer is sitting in section L, he is
still facing the x axis, but the positive side of the axis is to his left. If centerx was incremented here, the
model would move in an opposite direction of the mouse. In this case, centerx must be decremented by
delta_x. The same scenarios exist if the viewer faces the y axis.

To solve this problem, boolean variables for lookAtX, rightHandXPositive, and rightHandYPositive are
updated when each section is clicked. These variables are used in the logic making the camera pan in the
expected direction. The code for the pan() function follows.

17

At the end of the function, previous_x and previous_y are updated, the camera is repositioned, and the
model is redrawn.

 Returning to Seat Map: The second scenario of the mouseOnModel() function is a click on the "Back
to Seat Map" button. If the mouse is clicked within the coordinates of the button, the appropriate
functions are called to reestablish a 2D view. The background color is set to white once again, and depth
testing is disabled. The seat map is drawn, and the program restarted.

18

CONCLUSION

The results of this research project show a great deal of potential for an application that could
realistically be used by Missouri State University and its fans. Overall, the JQH Arena viewer has already
met the following objectives:

 Displays 3D coordinates of JQH Arena from data collected by a laser scanner.

 Has a user interface that allows users to view the model from each seating section on the lower
level.

 Allows for panning of the camera while viewing a section by clicking and dragging the mouse
over the model.

The next step of the project is to correct and improve the things that could have been done better. This
phase should solve some immediate problems and enhance the usability and maintainability of the
application. On the to-do list:

 Build a mesh using the data points. This will be possible with more time and preprocessing of
the data files. The data points need to be sorted by horizontal angle and vertical angle, with an
equal number of points in each column.

 Write a single routine for loading pixel maps. Right now, each pixel map has its own loading
function, which is inefficient and difficult for reuse.

 Implement lighting. The arena was only partially lit during the scanning process, which explains
the darkness of the points, especially in the upper sections. Some experimentation with OpenGL
lighting functions may help this situation.

 Improve camera positioning. This will require more experimentation with glFrustum() and
gluLookAt() to get a more accurate picture.

 Research ways to improve performance.

 Improve the UI by adding the JQH Arena logo and text giving directions on how to use the
program.

19

At this point, work on the project should continue with some long term goals in mind. With more time
and research, these goals could very well be reached:

 Enhance functionality of the HUD. Allow users to input their seat numbers and move directly to
that location.

 Convert the program to a web application. Once completed, a web application would be a
practical way for fans to use the program.

ACKNOWLEDGEMENTS

Special thanks to Dr. Kerry Slattery for use of the scanning equipment and advice on data sorting, and to
Dr. Yang Wang for instruction in OpenGL and overall helpfulness in making this project a reality.

REFERENCES

1. Astle, Dave & Hawkins, Kevin. (2004). "Beginning OpenGL Game Programming", Premier Press.
2. Ballena Technologies Inc. (2005-2006). Ballena Technologies Inc. Retrieved Oct. 11, 2010, from
 http://www.seats3d.com/index2.html.
3. Bui, Triet, Ravani, Bahram, Lasky, Ty A., & Yen, Kin S. (2008). "Applications of 3D Laser Scanning for
 Construction and Maintenance", Advanced Highway Maintenance and Construction Technology UC
 Davis Caltrans
4. New York Yankees Virtual Venue. (2008). IOMEDIA. Retrieved Oct. 11, 2010, from
 http://yankees.io-media.com/.
5. OpenGL Overview. (1997-2010). OpenGL. Retrieved Oct. 11, 2010, from
 http://www.opengl.org/about/overview/.
6. The Sports & Entertainment Studio. (1997-2010). IOMEDIA. Retrieved Oct. 11, 2010, from
 http://www.io-media.com/#/251/sports/who-we-are.
7. Unver, Ertu, Atkinson, Paul, & Tancock, Dave. (2006). "Applying 3D Scanning and Modeling in
 Transport Design Education", Computer-Aided Design & Applications, Vol. 3 (1-4) 41-48.

