
Facial Feature Detection for Automatic Head Modeling

Vanna Bushong

University of California, Los Angeles

vbushong@ucla.edu

Abstract

This project presents a method for automatically generating 3D

models of the human head using two images as input - a front

view and a side view of the subject. Key facial landmarks such

as the chin, corners of the eyes and mouth, and tips of the ears

are identified on the images using a combination of trained clas-

sifiers, corner and edge detection, and constraints of human

facial geometry. The landmark coordinates are then used to

translate corresponding vertices of a generic head model to

match the images. The goal of this project was to provide a tool

for artists that would offer a head start in character modeling for

animated films or games; therefore, the final program was de-

veloped as a plugin for Autodesk Maya software, the industry

standard for modeling and animation.

1 Introduction

The human head is one of the most difficult tasks to tackle when

it comes to character modeling. In the animation and gaming

industry, the standard practice is to obtain two images of the

subject's head (a front and side view) and load these reference

images into Maya or another modeling program. Using ortho-

graphic views, the modeler can begin with a primitive cube and

then make adjustments by adding and manipulating vertices and

edges until the desired head shape is achieved. Typically, only

one half of the head is modeled at first, then the geometry is

mirrored to produce a perfectly symmetrical other half. To ac-

count for asymmetries, the modeler must make further adjust-

ments.

For even an experienced modeler, this is a time-consuming pro-

cess. This project aims to provide a tool that speeds up the pro-

cedure and creates a head model that is as close as possible to

the reference images. While others have been successful in gen-

erating models based on images [1] [5], the end results would

benefit from more user interaction throughout the process. This

project detects facial feature landmarks in two given images and

allows the user to make adjustments if desired before the model

is generated. The feature points are loaded into a plugin for Ma-

ya, which uses the coordinates of these points to adjust the verti-

ces of a generic head. Since the head is created in Maya, the

modeler can easily make any touch-up adjustments and begin

using the model immediately.

This paper outlines the approach used in detecting the 28 facial

landmarks that are currently used to manipulate the model, along

with the steps taken to adjust the vertices of the final model. The

initial problem was to detect a face in the two reference images

along with the location of each of the main features. Once the

general location of the features was established, the key land-

marks were set using a combination of corner and edge detec-

tion, as well as the constraints of human facial geometry. For

detecting the edges of lips, red hues were also factored in. After

allowing the user to make adjustments, the coordinates were

saved and loaded into the final program, which converts pixel

coordinates to world space locations in centimeters for Maya.

The resulting program was successful in creating models with

features closely aligned to the reference images. The tool has not

been perfected, but it is already proving to be helpful in giving

modelers a head start on their work.

2 Basic Feature Detection

The first step in building the model was to obtain two reference

images of a subject. One of these images must be taken from the

front of the subject’s face, while the other must be from the left

side. For best results, the subject should be well lit and placed in

front of a solid colored background if possible (though not abso-

lutely necessary). Long hair should be pulled back so the ears

will be visible, and accessories such as glasses and earrings

should be removed.

The next step was to detect the face in each of the target images.

This was accomplished using a function from the OpenCV li-

brary that implements the Viola-Jones algorithm [6] using a

trained classifier for faces. The classifiers for front and profile

faces were applied to the front and side view images respective-

ly.

After finding the faces, classifiers for the eyes, nose, mouth, and

ears were applied in order to find the approximate location for

each of these features. Results of the initial detection are shown

below.

Figure 1: Results of the initial feature detection on the front

view of the subject.

3 Eyes

In the current state of this project, four landmark points are set

along the edges of each eye – at the top, bottom, and in both

corners. The initial coordinates of these points were set by plac-

ing them halfway between the width and height of the detected

eyes.

A region of interest was created using the boundaries of the

detected eyes and the resulting image was converted to grayscale

and blurred using a 3x3 kernel. After this preprocessing, an

OpenCV function for Canny edge detection was applied to the

ROI. Canny edge detection works using a gradient calculation,

followed by thresholding and non-maximum suppression of the

image [2].

Using the Canny images, the top and bottom points of the eyes

were snapped to the closest contour. To prevent error, the points

were constrained from moving any farther than half the distance

of the detected eye boundary, making overlap impossible.

For the corners, a new ROI was created using half the height of

the detected eye and 25 percent of the width. This area was cen-

tered along the left and right edges of each eye, and a corner

detector was applied. The detector was another function of

OpenCV called goodFeaturesToTrack, which is an implementa-

tion of the Shi-Tomasi algorithm [4]. The function accepts a

parameter for the number of corners to return, and returns them

in order of strength. This parameter was set to one, thus return-

ing only the strong corner that is found on the eye.

4 Nose

Defining the shape of the nose was a more difficult task. Three

coordinates were initially set at the bottom, left, and right sides

of the area detected by the nose classifier. This allowed for a

rough definition of the outer edges of the nostrils and the point

where the bottom of the nose meets the face.

Just as with the mouth, Canny edge detection was applied to the

ROI and the result was used to snap the points to the nearest

contour. For the bottom point, only the bottom 25 percent of the

ROI was searched, as it was discovered that if a contour was not

found by that point, one did not exist. In poorly lit images, the

edge at the bottom of the nose was not defined enough to be

detected. If the entire nose was searched, the point would erro-

neously snap to a contour much too high. In this case, the point

at its initialized position is a closer approximation than finding a

contour. For the left and right side coordinates, the search for a

contour began at each edge and covered half of the width of the

detected nose region so the points could not overlap.

The three coordinates in the front view gave a good starting

shape for the nose, but one more point was needed to define the

nose along the Z-axis. This point was defined as the tip of the

nose in the side view image. To find this point, another ROI was

created by extracting the left half of the detected face in the

profile reference image. Once again, Canny edge detection was

used to create an outline of the face. With the outline drawn, a

search algorithm located the point on the contour with the small-

est x component, making it the left-most point and the tip of the

nose.

Figure 2: Results of the initial feature detection on the side view

of the subject.

Figure 3: Initial coordinates set for the left eye.

Figure 4: Canny edge detection applied to the left eye.

Figure 5: Final coordinates set for the left eye after edge and

corner detection.

Figure 6: Initial coordinates set for the nose.

Figure 7: Final nose coordinates after edge detection.

This procedure makes it important to use a solid color back-

ground when photographing the subject, with the subject and

lights positioned so as not to cast shadows on the background.

This will prevent false positives from contours behind the face.

However, as previously mentioned, the user interaction compo-

nent of the program allows for mistakes to be corrected in case

the modeler has no control over how the images are obtained.

5 Mouth

The edges of the mouth were detected using a slightly different

method than the other features. The process began the same way

as the eyes, with a point set halfway along each edge of the de-

tected mouth region.

Instead of detecting edges, however, the top and bottom points

were adjusted by searching along the Y axis for a pixel falling

within the color range of lips.

First, the RGB values were extracted from each pixel in the

search. Then the brightness value Y was calculated in accord-

ance to the ITU-R BT.601 standard for brightness in MPEG and

JPEG algorithms:

The color components were then divided by Y and multiplied by

100 for scaling purposes.

Nakata and Ando [3] have shown that the color most likely to

represent lips will have a red component above 125, a green

component between 80 and 95, and a brightness value below

180. Using these constraints, the top and bottom points were

moved to a more accurate location.

After the top and bottom points of the mouth were set, it was

easier to adjust the sides. The color detection process did not

work in this case, since the corners of the mouth are usually

much darker and in shadows. A new ROI was created for both

the left and right sides, using the new top and bottom points of

the mouth to set the height. The width of each was set to 25

percent of the width of the originally detected mouth. Just as

with the eyes, the Shi-Tomasi corner detector was applied to

find the left and right corners.

6 Ears

Ears are probably the most difficult feature of the head to model,

considering their intricate shape. In the current state of the pro-

ject, the details of the ears (such as inner ear shape and ear lobe

size) on the generic model are not adjusted for the final result.

However, the generic ear is moved to the correct location on the

final model using coordinates of the top and bottom of each ear

in the reference images. With the ear in the correct position, the

modeler should find it easy to make adjustments to the fine de-

tails.

For the front view, the ear points were established using

knowledge of facial geometry and corner detection. Along the Y

axis, most ears fall between the middle of the eyes and the bot-

tom of the nose. Along the X axis, a person's head is generally

equal to the width of five of his or her eyes. Using these guide-

lines, a region of interest was established at the top and bottom

of each ear. The top region began at the top outside corner of

each detected eye region and extended the same width and

height as the eye region. The bottom region began at the same X

axis location, but with a Y value taken from the top of the de-

tected nose. After experimentation, the height of this region

needed some room for error, since ear lobes can sometimes hit

far above or below the bottom of the nose line. Therefore, the

height of the bottom region was set to twice the height of the

nose region.

With the ROIs established, the top and bottom points of the ear

were detected using the Shi-Tomasi corner detector.

Figure 8: Edge detection (on left) used to find the tip of the nose

in the profile image (on right).

Figure 9: Initial coordinates set for the mouth.

Figure 10: Final coordinates for the mouth. In this example, the

bottom and left points need adjustment by the user.

Figure 11: The top region of the left ear. The white point is the

detected corner.

(1)

(2)

7 Chin and Head

Six additional points were necessary for establishing the size of

the head. On the front image, one point was set at the bottom of

the chin and another at the top of the head. These points would

eventually be used to calculate the height of the head in pixels,

which was then converted to centimeters for Maya.

These points were the most difficult to detect using contours or

corner detectors. Therefore, the chin point was simply set half-

way along the bottom of the face initially detected by the classi-

fier. It was hard to know if this point was sitting above or below

the actual chin, since the result from the classifier is not con-

sistent one way or the other. It was also difficult to find the con-

tour of the chin without picking up a lot of other contours creat-

ed by shadows under the lips and on the neck. Because of this,

the best location was generally found by leaving the point alone.

The top of the head was calculated using the knowledge that the

middle of the eyes sit approximately halfway between the chin

and the top of the head. In the future, a better method will be

used to fine-tune the chin and head locations.

Two points were also established on the profile view for calcu-

lating the height of the head. An ROI was set for the chin over

the bottom left corner of the detected face. After detecting edges

and drawing the chin contour, the point for the bottom of the

chin was set at the bottom right contour.

The point at the top of the head was established the same way,

with the ROI being set at the top center of the image. The same

process was also used for finding a point along the front edge of

the chin and the back of the head. These points were used to

adjust the size of the head along the Z axis.

As previously noted, all of the points established using edge

detection require a solid colored background for best results.

8 Setting up Maya

One of the key features of this project is the ability for the user

to guide the modeling process as much or as little as desired.

Once the facial landmarks have been identified, the user is al-

lowed to adjust them by clicking and dragging the points on

each image.

Once he or she is satisfied, the coordinates are saved into a text

file. To run the final plugin in Maya, the user specifies this file,

along with the two reference images, to build the model. By

default, Maya has orthographic camera views created for the

Figure 12: Coordinates of the chin and top of head as initially set.

These will require user modification.

Figure 13: Bottom of chin set using edge detection.

Figure 14: Profile features set using edge detection.

Figure 15: Initially detected coordinates (on left) vs. coordi-

nates after user adjustment (on right).

front and side of the workspace, so the two images are loaded

into their respective image plane sitting perpendicular to each

camera.

The default working unit in Maya is centimeters, and the height

of the generic head model used is eight cm. To size the images

properly, the height of the head in pixels was calculated by sub-

tracting the top of the head from the bottom of the chin. The

height was then divided by eight to find the number of pixels per

cm in the image. Naturally, the inverse is the number of cm per

pixel. This is a key value used in adjusting the model vertices,

and must be calculated separately for each image.

By multiplying the height of each image in pixels by their re-

spective cmPerPx value, the images were scaled so that the top

and bottom of the head align with the top and bottom of the

model. Using this method, every head modeled will have the

same height, but different widths. This is not a problem, since

the final head will be placed on a character and scaled propor-

tionally in x, y, and z to the appropriate size.

Once the images were sized, the generic head model was loaded

and ready to be morphed into its new shape. Since each vertex in

Maya has an index number, the numbers for the key vertices of

the model corresponding to the 28 facial landmarks were identi-

fied ahead of time and loaded as constants into the program.

9 Adjustments along X, Y, and Z

The first adjustments made to the model were along the x and y

axis, using the front image only. The generic head model used in

this project contained 2179 vertices. Naturally, it was no simple

task to move one vertex to a new location while simultaneously

adjusting the surrounding vertices to create the proper head

shape. The solution to this problem was to use Maya's soft select

tool.

Soft select works by selecting a vertex plus all the surrounding

vertices within a certain distance known as the falloff radius.

The vertices within the falloff radius are weighted from zero to

one, with the strongest weight being closest to the selection.

After some trial and error, the falloff radius was set for every

key vertex so that each move did not make an undesired impact

on other key vertices.

One drawback of using the soft select tool was that vertices

could not be translated by calling the Maya command to move to

an absolute position in world space. If the selected vertex was

moved to a specific position, all of the vertices included in the

soft selection would move towards that point. The desired be-

havior was to move all of the selected vertices in the same direc-

tion. To accomplish this, it was necessary to use the Maya com-

mand for moving a vertex relative to its current position.

Calculating the relative change in position required finding the

difference in centimeters between the where you want the vertex

to be (the landmark point) and where you are now (the corre-

sponding vertex on the model). The position of the vertex on the

model was easy to obtain through a Maya function call, which

returned the location in world space in centimeters. For the

landmark position, all that was initially known was the x and y

location on the image. To find a position on the x axis, the x

location of the chin point on the front image was considered to

be at the origin. Subtracting the x value of the chin from the x

value of the landmark gave the offset in pixels. This value was

then multiplied by cmPerPx to convert the result to centimeters.

With the two absolute locations known, the relative movement

was simply the difference between them.

The same procedure was applied for calculating y values, using

the chin as y at 0.

Adjustments along the z axis were made using the points on the

profile image. A similar process was used as with the x and y

axis, except in this case, the x values on the image correspond to

z values on the side view. The difference was multiplied by

cmPerPx for the side image to find the absolute location of the

landmark.

10 Results

The resulting program creates a head with features that match

fairly well to the reference images. While it is not perfect, the

tool is certainly useable and brings the modeler much closer to a

finished product than starting from scratch, which was the goal

of the project.

The resulting images below show the models created by the

program with no user modification in Maya. It is obvious that

the program could be improved by adding more feature points.

In the future, points will be added to the eyebrows, inner edges

of the lips, the jaw line, and other locations along the edge of the

head. Also, there have been no adjustments made to the neck or

the shape of the ears - something that will be done in future ver-

sions of the program.

Figure 16: Front and side images loaded into orthographic views

in Maya.

(3)

(4)

(5)

Figure 17: The resulting mesh in Maya, shown in wireframe and

shaded views. The shape of the model could be improved with

additional landmark points.

Figure 18: A second example of a final model.

References

[1] AKIMOTO, T., SUENAGA, Y., AND WALLACE, R.S. 1993. Au-
tomatic Creation of 3D Facial Models. In IEEE Computer
Graphics and Applications, pp. 16-22.

[2] CANNY, J. 1986. A Computational Approach to Edge Detec-
tion. In IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 8(6):679–698.

[3] NAKATA, Y. AND ANDO, M. 2004. Lipreading Method Using
Color Extraction Method and Eigenspace Technique. In Sys-
tems and Computers in Japan, vol. 35, no. 3.

[4] SHI, J. AND TOMASI, C. 1994. Good Features to Track. In
CVPR, pp. 593-600.

[5] TANG, L. AND HUANG, T. 1996. Automatic Construction of

3D Human Face Models Based on 2D Images. In Proc. Int.

Conf. Image Process., 1996, vol. 3, pp. 491–520.

[6] VIOLA, P. AND JONES, M. 2001. Rapid Object Detection Using
a Boosted Cascade of Simple Features. In Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recog., pp. I-511–
I-518.

