
Implementation of Snake Method for Lip Tracking

Shilpi Nayak and Vanna Bushong

April 1, 2012

CS 269, UCLA

Abstract – This project presents a method for

tracking lips with the implementation of a

dynamic programming snake. The program

detects faces and mouths in a video frame and

initializes the snake in close proximity to the

mouth. In the current version of the program,

the snake will do a fairly accurate job

outlining the lips in the first two or three

frames. Further development is needed,

however, to improve speed and accuracy as

the video continues. Future work on this

program could lead to a useful tool for

expression recognition in applications such as

political campaign videos.

I. Introduction

 Lip tracking in video has proved to be no

simple task for the many researchers who have

attempted it. Several methods have been

implemented, including the jumping snake

algorithm by Eveno et al. [1], pattern matching

by Barnard et al. [2], and color extraction by

Nakata and Ando [3]. Our lip tracking

application focuses on the original active

contours, "snakes", proposed by Kass. et al. [4]

implemented using dynamic programming, with

a combination of edge and color extraction for

finding the lip boundary.

 This paper outlines our approach and many

of the trial and error steps we took in developing

the end result. As research always goes, some of

our methods were successful, while others were

not, so we will explain what worked and what

did not. The initial problem was to identify the

faces and mouths in the video, followed by the

task of initializing a snake in close proximity to

the mouth. The snake implementation required a

calculation of the energy of the image at each

pixel, which we defined using canny edge

detection and red hue extraction. We constrained

the snake to be within the boundary of the box

surrounding the mouth at every frame. Finally,

we attempted to add a “bubble” of energy inside

the lip boundary to help prevent the snake from

jumping to the edges of the teeth when the

mouth is open. For this to work, we had to

assume that the initial frame is captured when

the lips are closed and the snake is constrained

such that it cannot shrink substantially more than

the initial shape.

 The resulting program will track the lips of

one person in an input video. Our current

implementation may not be as robust as we had

hoped, but it does a fairly good job of outlining

the lips in the initial frames. With further

adjustments, this program could be a very

legitimate lip tracking technique that may be

used for various applications.

II. Face and Mouth Detection

 The first step in tracking lips is to know if a

person's face and mouth can actually be seen in

a video frame. Our program uses a function from

the OpenCV library for detecting faces –

cvHaarDetectObjects – which is an

implementation of the Viola-Jones algorithm for

face detection [5].

 The Viola-Jones algorithm as implemented in

OpenCV essentially works by training a

classifier with hundreds of sample images of the

target object, in this case, a face. These are

known as positive examples. Then the classifier

is trained with negative examples - images of the

same size without a face. Once the classifier is

trained, it can be applied to a section of an image

the same size as the training images and

determine if there is likely to be a face in this

area. The classifier can be moved across the

image and resized to find faces of various sizes.

 By applying this function in our program, we

were able to draw a rectangle around every face

detected in a video frame. For each face

detected, we also drew a smaller box around the

mouth, which we refer to as the “mouth box.”

The coordinates of the mouth box were based on

the coordinates returned from the box around the

face. The best calculation we arrived at for the

mouth box was a width of 40% of the face and

15% of the height.

 We began by drawing these boxes on the

frame to ensure correctness. Once we had a

mouth box of an appropriate size, we could use

it as a starting point for initializing a snake.

Fig. 1. Face and mouth detection.

III. Implementation of Dynamic

Programming Snake for Tracking Lip

Boundary

 Once a face and mouth are detected, it is

possible to initialize a snake fairly close to the

lip boundary. A snake, also known as an active

contour, is a deformable spline that tries to

minimize its energy as it is pulled by image

forces towards object contours. The original

snake model was presented by Kass. et al. [4] in

1987 and continues to be implemented in

various forms in computer vision projects to this

day.

 The energy functional used by the snake to

find contours can be written as

 (1)

where is the internal energy of the snake,

 represents the image forces, and is

the force of the external constraints.

 The equation is then minimized using

iterative gradient descent and solved using finite

differences. For the purposes of this paper, we

will not go into the details of how it is solved,

but will focus on the image forces and how we

calculated them for lip tracking purposes.

 For our project, we decided to use a dynamic

programming implementation of the original

snake. Special thanks to Garett Ridge and his

team of fellow students at UCLA for providing a

version of the dynamic programming snake that

was incredibly useful in building our own [6].

Their dynamic programming snake searches for

globally optimal solutions as it steps across each

snake pixel (snaxel). It works by finding the best

choice of neighboring locations for each new

snaxel to move to so that the energy of the entire

snake is optimized. After deriving the best

decision for the entire snake, all snaxels move

simultaneously until the snake attains the

minimum energy. A table of prior energies and

location is maintained to store the minimum

energy and optimal position.

 To perform lip tracking, we made several

modifications to this version of the snake. First

of all, since our application deals with video, not

still images, we wanted the snake to run

automatically, without user interaction. So we

eliminated the mouse interaction and instead

initialized the snake via the mouth box boundary

as previously mentioned.

 A second modification was necessary for the

deblurring process that Ridge used. Since we are

dealing with video, there is not enough time to

blur and deblur every frame while keeping the

video continuous, as was possible for a still

image. Also, from where we initialize the snake,

the next minimum lies in the lip boundary so we

need not bother about any other low energy

feature. So we completely removed the blurring

code and relied on our own image energy

calculation for iterating the snake.

 The next adjustment was made to the snake

itself. Even after initializing the snake to the

mouth box, we had trouble keeping it closed in a

circle. Our solution was to force the snake to

stay closed by drawing an additional line

between the last snaxel in the array and the first.

 Finally, we rewrote the external energy

function so that any pixel outside of the mouth

box had a maximum energy value. This

prevented the snake from jumping up to the nose

or down to the chin where the gradients were

often stronger. For the pixels within the box, we

defined an energy cost based on calculations of

the image gradient, canny edges, and pseudo hue

extraction [1]. The following section describes

how we obtained these values.

IV. Calculation of Pixel Energies

 The essential component of making a snake

move is the energy of the pixels around it. For

lip tracking, we needed to assign lower energy

values to the pixels on the outer boundary of the

lips. To do this, we performed three different

types of calculations on the image and

eventually used two of these values in our

external energy function.

 We first converted our original image frame

from RGB color to a grayscale image and

calculated the gradient of that image. We used

the sobel edge detector to find the gradient in

both directions and the strength of the edge.

Fig. 2. A sample frame with a gradient applied.

 It was immediately clear that gradient values

alone would not be enough to keep the snake

aligned to the mouth throughout the video. To

make the boundary even stronger, we calculated

another frame using canny edge detection.

OpenCV has a convenient function for finding

canny edges, which we used after first blurring

the grayscale version of the original frame. The

cvCanny function works by first calculating

gradient of the image followed by thresholding

and suppressing the non-maximal region of the

image.

 We realized that since the canny function

was already calculating a gradient, it would not

be necessary to include a separate value for the

gradient we had found on the grayscale image

before.

Fig. 3. A frame with canny edges detected.

 The gradient and canny edge images were

great for finding the edges of facial features, but

neither took into account one of the most

distinguishing aspects of lips: color. Naturally,

we wanted to assign lower costs to pixels with a

higher red component. This was achieved by

first extracting the red, green, and blue

component of each pixel. Then a brightness

value Y was calculated using the following:

(2)

This is in accordance to ITU-R BT.601 standard

for brightness in MPEG and JPEG algorithms.

The color components were then divided by Y

and multiplied by 100 for scaling purposes.

(3)

 Based on the research by Nakata and Ando

[3], the pixel most likely to match lips will have

a red component above 125, a green component

between 80 and 95, and a brightness value below

180. For all pixels that fell within these

constraints, we set their hue value using the

following:

(4)

Any pixels outside of the constraints were

simply assigned a black value. This gave us an

extracted hue image like the following.

Fig. 4. A frame with red hues extracted.

 The final step was to calculate the gradient of

this new image using the same method as for the

original grayscale image. The resulting pixels

were used as another input to the external energy

function.

Fig. 5. The hue-extracted frame with a gradient

applied.

 In the process of developing this program,

we attempted many different weights and

combinations of weights for the pixel values

used to calculate external energy. In the end, the

combination that worked best is given here:

 (5)

where

and is the current pixel of the hue-extracted

frame, is the current pixel of the frame

with canny edges detected, and is

the current pixel of the hue-extracted frame with

a gradient applied.

 This energy value is calculated for each

snaxel and used as an input to the energy

function called as the snake iterates.

V. Constraints

 Early in development, it became apparent

that we would need to place additional

constraints on the snake to solve a couple of

initial problems. First, the snake needed to stay

within the mouth box every frame. Second, we

needed to prevent it from collapsing on itself

when the mouth is open and the teeth create a

stronger edge than the lips.

 To solve the first problem, we applied a shift

to the entire snake at the beginning of each

frame. By storing the position of the mouth box

at the previous frame and calculating its change

in x and y coordinates at the next frame, we

could apply the same adjustment to every

snaxel. This does not change the shape of the

snake, but simply moves it to be within the

mouth box. This method was very successful in

keeping the snake close to the mouth, even when

the head moved a significant distance across the

screen from one frame to the next.

 The second problem was quite a bit more

challenging, and we have not yet found a

solution that entirely works. The assumption was

made that the speaker would begin the video

with his or her mouth closed. We attempted to

place what we called an energy “bubble” inside

of the lips, so the snake would not be attracted to

the center portion of the mouth once the speaker

began talking. This was done by finding the

minimum and maximum x and y points on the

initial snake and using those points as top,

bottom, and side coordinates of an ellipse. The

ellipse was shrunk to be completely within the

mouth in every frame, and every pixel within it

was assigned the maximum energy value, which

we defined as 10,000,000.

VI. Results

 The results of our approach are mixed – in

some ways we were very successful, while in

others we simply have not yet been able to make

it work. On the positive side, we were successful

in detecting faces and mouths, and we have a

moving snake that stays in close proximity to the

mouth every frame. In many cases, when the

snake runs its first two or three iterations, it does

an accurate job outlining the lips.

 Our problems arise as the video continues

and the mouth changes shape more and more.

The snake has difficulty keeping an accurate

shape and tends to collapse on itself over time as

the mouth is opened and closed. Forcing a

higher energy level at the innermost part of the

mouth should help with this problem, but this

idea needs further development time to prove it

could be a valid solution. Also, the current

program does not run as fast as we would like.

Fig. 6. Snake outlining lips when the mouth is

closed.

Fig. 7. Snake outlining lips when the mouth is

open.

VII. Future Work

 We started the project with an aim to develop

a program which can be used towards facial

expression analysis. Although there is a long

way to go to build a program to detect

expressions, next we will focus on interpreting

the various lip movements combined with eye

movements using a training system. The main

objective is to be able to detect the alignment

between the speech and the expressions of

politicians in news channels and presidential

campaigns.

VIII. Conclusion

 In this project, we succeeded in tracking the

lips in the starting few frames. We used face

detection and then mouth detection in estimating

the approximate location of the mouth relative to

the face. We used the mouth box coordinates to

initialize the snake close to the lips. The snake

then converges to the lips using the dynamic

programming approach.

 The image energy used here is derived from a

combination of energies from a psuedo hue

image and a canny edge operation applied on an

image. To extract the psuedo hue image, we

filtered the pixels which have the color of lips

detected by pseudo hue and luminance

(brightness) of image. The gradient of the

pseudo hue image is also used to calculate the

total energy of the image. We also attempted to

use constraints that stop the snake from

collapsing more than a threshold by maximizing

the energy of pixels which lie certainly inside

the lip boundary. For this to work, we would

have to assume that the lips in initial frame are

in a closed position so we can extract the region

which will always be inside the lip boundary.

 We were successful to some extent, but there

is much room for improvement. One possible

way would be to consider the lip shape and plot

the cubic curve to define the lip boundary after

obtaining required points when the snake

converges. We could also possibly apply

training with all kinds of lip shapes to make the

tracking more robust.

References

[1] N. Eveno, A. Caplier, and P. Coulon,

 "Accurate and Quasi-Automatic Lip

 Tracking," IEEE Trans. Circuits Sys. Video

 Tech., vol. 14, no. 5, pp. 706-715, May 2004.

[2] M. Barnard, E. Holden, and R. Owens, "Lip

 tracking using pattern matching snakes,"

 ACCV2002: The 5th Asian Conference on

 Computer Vision, Jan. 23-25, 2002.

[3] Y. Nakata and M. Ando, "Lipreading

 Method Using Color Extraction Method and

 Eigenspace Technique," Systems and

 Computers in Japan, vol. 35, no. 3, 2004.

[4] M. Kass, A. Witkin, and D. Terzopoulos,

 “Snakes: Active contour models,” Int. J.

 Comput. Vis., vol. 1, no. 4, pp. 321–331, Jan.

 1988.

[5] P. Viola and M. Jones, "Rapid Object

 Detection using a Boosted Cascade of Simple

 Features," in Proceedings, IEEE Conference

 on Computer Vision and Pattern

 Recognition.

[6] C. Jiang, G. Ridge, and J. Fang, "Contour

 Tracking based on Intelligent Scissors and

 Snakes," http://cs.ucla.edu/~garett/dp.pdf

